

ASIAN & OCEANIC FORUM FOR PAEDIATRIC RADIOLOGY - CONTENTS

Editorial:

From AOSPR 2023 Hong Kong Co-chairpersons Prof. Winnie Chu & Dr. Elaine Kan

AOSPR 2023 Hong Kong Conference Awardees Presentations:

1. Hong Kong College of Radiologists Silver Award for Best Oral Presentation
Predicting response to initial chemotherapy in pediatric lymphoma using a semi
quantitative CECT-based abdomino-thoracic score: A pilot prospective
observational study

<u>Ishan KUMAR</u>, Shashank SONKER, Priyanka AGGARWAL, Vineeta GUPTA, Ram Chandra SHUKLA, Ashish VERMA - India

2. <u>The Hong Kong Society of Diagnostic Radiologists Trust Fund Gold Award for Best Poster Presentation</u>

Milder motor impairment is associated with less extensive thalamic damage in fullterm children with PVL

Jieqiong LIN, Hongwu ZENG - China

3. <u>The Hong Kong Society of Diagnostic Radiologists Trust Fund Silver Award for Best</u> Poster Presentation

A pictorial review of cardiac MRI features in post COVID-19 vaccine acute myocarditis

CT WANG, HL TSUI, PY CHU, YH HUI, YW HON – Hong Kong SAR

4. <u>The Hong Kong Society of Diagnostic Radiologists Trust Fund Bronze Award for Best Poster Presentation</u>

Milky CSF? A rare case of catheter-related extensive IVC thrombosis in a neonate Leanne HQ CHIN, Derek LH CHAN, Christy YK MAK, Christopher CH TONG, Khair JALAL, Alan KS CHIANG – Hong Kong SAR

Disclaimer:

All materials published in the Asian and Oceanic Forum for Pediatric Radiology (AOfPR) represent the opinions of the authors responsible for the articles and do not reflect the official views or policy of the Asian and Oceanic Society for Pediatric Radiology (AOSPR) or its member societies. Publication of an advertisement in AOfPR does not constitute endorsement or approval of the product or service promoted or of any claims made by the advertisers with respect to such products or services. The AOfPR and AOSPR assume no responsibility for any injury and/or damage to persons or property arising from any use of execution of any methods, treatment, therapy, operations, instructions, ideas contained in the articles. Because of rapid advances in medicine, independent verification of diagnoses, treatment method and drug dosage should be made.

ASIAN & OCEANIC FORUM FOR PAEDIATRIC RADIOLOGY - EDITORIAL

AOSPR Annual Scientific Meeting 2023 was held successfully in the Hong Kong Academy of Medicine on 2-3 September 2023. Despite being challenged by the untimely typhoon on the first day, the quick-witted Organising Committee seamlessly transformed the event to a hybrid virtual and physical meeting. The Meeting brought together more than 300 healthcare professionals from over twenty countries, international and local specialists in paediatric radiology gathered and shared knowledge. Networking was forged, nurturing passion in the field and building foundations for future collaborations.

The 2-day scientific programme embraced diverse topics ranging from neuroimaging to musculoskeletal radiology, from interventional radiology to quality and safety. There were four multi-disciplinary sessions on oncological imaging, imaging in renal disease, neuro radiology and state-of-the art imaging. Apart from the invited lectures delivered by the outstanding speakers from around the world, the proffered papers sessions, hands-on workshops and film quiz were equally popular.

In this issue, we include four excellent presentations that were awarded in AOSPR 2023. We express our gratitude to the authors for their outstanding contributions and generous acceptance of our invitation for publication in this issue of AOfPR.

Enjoy the forum!

Professor Winnie Chu Congress Co-Chairperson

(Luldin Wing

Organising Committee AOSPR 2023

Dr. Elaine Kan Congress Co-Chairperson Organising Committee AOSPR 2023

Hong Kong Editorial Team

Elaine Kan (Congress Co-Chairperson, AOSPR 2023)

Winnie Chu (Congress Co-Chairperson, AOSPR 2023)

Joyce Chan (Congress Honorary Secretary, AOSPR 2023)

Yoyo Chiu (Program & Publication Subcommittee member, AOSPR 2023)

AOfPR Editorial Team

Winnie Chu (Prince of Wales Hospital, Hong Kong)

Ji Hye Kim (Samsung Medical Center, Sungkyunkwan University, Korea)

Web Master – Jeevesh Kapur (National University Hospital, Singapore)

Predicting response to initial chemotherapy in pediatric lymphoma using a semi quantitative CECT-based abdomino-thoracic score:

a pilot prospective observational study.

Ishan Kumar, MBBS, MD, DNB
Department of Radiodiagnosis and Imaging,
Institute of Medical Sciences, Banaras Hindu University, Varanasi, India

Co-authors: Shashank Sonkar, Priyanka Aggarwal, Vineeta Gupta, Ram Chandra Shukla, Ashish Verma

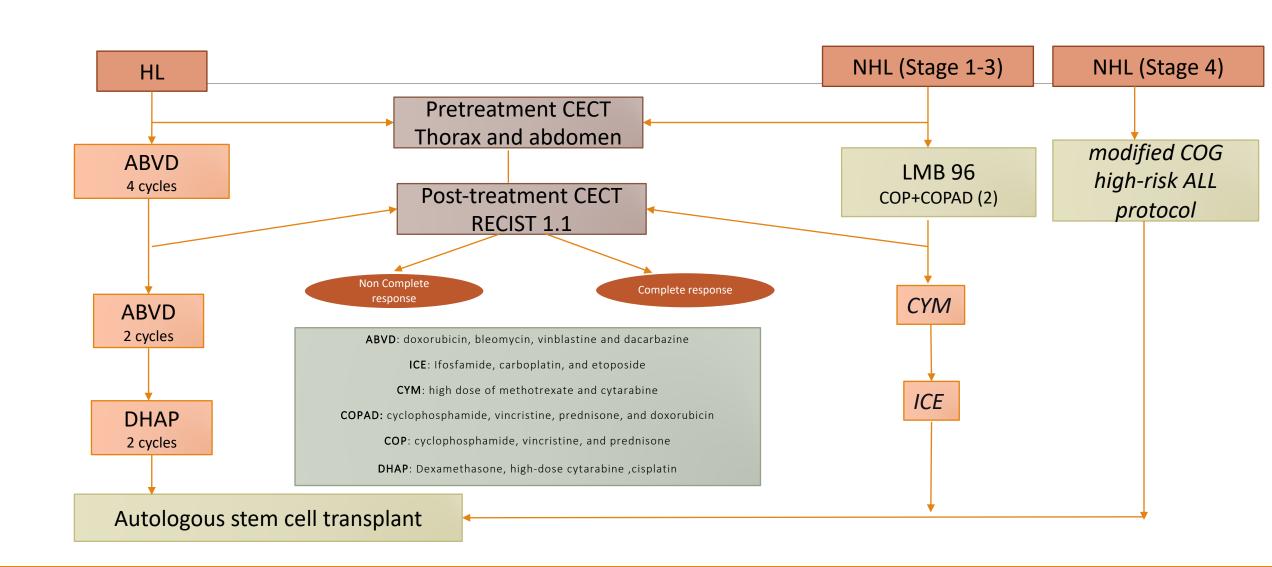
Background

Pediatric Lymphoma: third most common malignancy of childhood

Imaging modalities: US, Contrast Enhanced CT, FDG-PET, PET-CT, Whole body MRI

CT scan has become the standard of care in pre-treatment staging

Do not emphasize the estimation of lymph nodal disease burden based on the anatomical extent of the nodal involvement


Purpose

To validate a **semiquantitative lymph nodal scoring system** based on the anatomical pattern of involvement to

- Systematically estimate the *burden* of thoraco-abdominal lymph nodal disease in childhood lymphoma
- to predict response to the primary therapy
- to distinguish HL and NHL

prospective observational study

Children (<18 years of age) with a histopathological diagnosis of lymphoma

Combined score (total score 20): Thoracic score + Abdominal score

THORACIC SCORE (SCORE 10)

ABDOMINAL SCORE (SCORE 10)

- Superior mediastinal
- Paratracheal
- Subaortic
- Paraaortic
- Subcarinal
- Para esophageal
- Pulmonary ligament
- Hilar
- Interlobar
- Chest wall & axillary LN

- Abdominal wall LN
- Diaphragmatic LN
- Liver
- Stomach
- Pancreatic LN
- Mesenteric LN
- Colon LN
- Suprarenal retroperitoneal LN
- Infrarenal retroperitoneal LN
- Pelvic LN

Region	LN stations
Abdominal wall LN	Anterior Superficial: supraumbilical LN/infraumbilical LN Deep: superior epigastric pathway/inferior epigastric pathway/intercostal pathway Posterior Superficial: LN along superficial circumflex vessels Deep: LN along lumbar arteries/LN along deep circumflex iliac artery
Diaphragmatic LN	Anterior diaphragmatic LN/middle diaphragmatic LN/retrocrural LN/inferior diaphragmatic LN
Liver	Cystic duct LN/gastrohepatic/hepaticoduodenal LN/falciform ligament LN/falciform ligament/deep superior epigastric LN (subxiphoid)
Stomach	At lesser curvature: right paracardial LN/lesser curvature LN/suprapyloric nodes At greater curvature: left paracardial/proximal left greater curvature LN/distal left greater curvature LN/right greater curvature LN/infrapyloric LN Near lesser curvature: left gastric artery LN/common hepatic artery LN/celiac trunk LN/left bepatoduodenal ligament LN/posterior hepatoduodenal ligament LN/foramen of Winslow LN
Pancreas	Pancreaticoduodenal LN: anterior/posterior/inferior Dorsal pathway posterior to pancreatic head: superior/ inferior Body/tail: along proximal splenic artery/along distal splenic artery/splenic hilar IN
Mesenteric LN (small bowel)	Juxtaintestinal LN/intermediate mesenteric nodes/central mesenteric LN
Colon	Cecum: periappendiceal/ anterior cecal/ posterior cecal Colon: epicolic LN/ paracolic LN/intermediate mesocolic/terminal colic LN • Intermediate mesocolic LN: ileocolic LN/right colic LN/middle colic LN/left ascending and descending colic LN/ left colic LN/LN along sigmoidal artery • Terminal colic LN: SMA/IMA/middle colic Perirectal LN: sigmoid mesocolon LN/mesorectal LN Perianal LN: above pectinate line/below pectinate line
Retroperitoneal	Retrocaval LN/ precaval LN/laterocaval LN/aortocaval LN/preaortic LN/retroaortic LN/lateral aortic LN • Level: aortic hiatus LN/ middle paraaortic/ caudal paraaortic Perirenal: renal hilar/suprahilar/posterosuperior perirenal LN/posteroinferior perirenal LN
Pelvic	Common iliac LN: lateral/medial/middle External iliac LN: lateral/middle/obturator Internal iliac LN: Junctional/ anterior/iliac circumflex/lateral circumflex Perivisceral: • perivesical: prevesical/postvesical/lateral vesical • periuterine/parametrial/pericervical LN • periprostatic/ periseminal vesicle LN Others: posterior iliac crest LN/ gonadal vessels LN Inguinal LN: superficial/ deep inguinal LN

Regional abdominal pattern scores

Gastric nodal score: total score 9

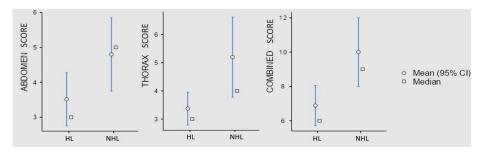
Celiac axis -peripancreatic: total score 13

Mesentrico-colic score: total score 14

Retroperitoneal score: Total score 17

Kumar et al.

Indian J Radiol Imaging. 2022;32(1):62-70.


Fifty patients : Mean age of 7.56 ± 3.01 years (M: F= 39:11).

• Hodgkin lymphoma (HL): 35

• Non Hodgkin lymphoma (NHL): 15

Comparison between HL and NHL

Lymph nodes/ nodal	HL	NHL	p-value
score			
Abdominal score	3.5±2.3	4.8±2.1	0.035
Thoracic score	3.3±1.75	5.2±2.8	0.026
Combined score	6.89±3.54	10.0±3.96	0.01

Thorax							
Upper paratracheal 5 (14%) 6 (40%) 0.44							
Lower paratracheal	7 (20%)	8 (53%)	0.018				
Pulmonary ligament 4 (11.4%) 7 (47%) 0.006							

Lymph nodes/ nodal score	HL	NHL	p-value		
Mesenteric					
Juxta-intestinal	18 (51%)	13 (87%)	0.019		
Intermediate	18 (51%)	13 (87%)	0.019		
Central	17(51.4%)	12 (80%)	0.039		
	Retroperitoneal				
Latrocaval	18 (51%)	13 (87%)	0.019		
Aortocaval	19 (54%)	14 (93%)	0.008		
Preaortic	19 (54%)	14 (93%)	0.008		
Retroaortic	20 (57%)	14 (93%)	0.012		
Lateral aortic	21 (60%)	14 (93%)	0.018		
Aortic hiatus	21 (60%)	14 (93%)	0.018		
Middle paraaortic	20 (57%)	14 (93%)	0.012		
Caudal paraaortic	19 (54%)	14 (93%)	0.008		
Renal hilar	20 (57%)	13 (87%)	0.043		
Suprahilar	17(51.4%)	13 (87%)	0.012		
Posterosuperior perirenal	16 (46%)	13 (87%)	0.007		
Posteroinferior perirenal	16 (46%)	12 (80%)	0.025		
Retroperitoneal score (total 17)	7.51±5.92	12.4±3.89	0.005		

Response assessment in HL and NHL

Lymph nodes/score	Complete response	Non complete response	P value
	Hodgkin Lymphoma		
HL (n=35)	23(65.7%)	12 (34.3%)	
Mean abdominal score	2.48±1.56	5.50±2.20	<0.001
Mean thorax score	2.78 ± 1.31	4.50 ± 1.98	0.016
Combined score	5.26 ±2.09	10.00± 3.72	<0.001
Regional abdominal scores			
Celiac axis-pancreatic	0.95 ±1.6	4.92± 4.29	<0.001
Retroperitoneal score	6.27± 6.017	9.25 ± 5.38	0.163
Mesentrico-colic score	4.50 ± 5.6	11.42 ± 4.87	0.001
Gastric score	0.046 ± 0.21	1.58 ± 3.03	0.022
	Non-Hodgkin Lymphoma		
NHL (n=15)	6 (40%)	9 (60%)	
Mean abdominal score	3.67 ± 0.52	5.56± 2.40	0.012
Mean thorax score	2.67 ±0.82	6.89 ± 2.32	<0.001
Combined score	6.33 ± 0.82	12.44 ±3.21	<0.001

Children with complete response in both HL and NHL group showed a lower thoracic, abdominal, and combined scores than those who did not show complete response to primary treatment.

Discussion

This study is the first one to elaborate on the differences in the nodal pattern of involvement between HL and NHL

Points favoring NHL

- Higher nodal burden: higher thoracic, abdominal and combined scores
- Higher involvement of **retroperitoneal and mesenteric** lymph nodes
 - Increased incidence of IVC compression
- Higher incidence of enlarged upper and lower paratracheal, and pulmonary ligament LN
 - Increased Airway compression

Study	Modality	Lymph nodal staging system	Reference
Cotswolds	СТ	4 stages:	J Clin Oncol. 1989;7: 1630-1636.
modifications of the		• single LN,	
Ann Arbor staging			
(Hodgkin lymphoma)		LN on both sides of the diaphragm a	
(ag)		diffuse disease with 1 extralymphatic organ	
		bulky disease: > 10 cm or >1/3 rd of transverse thoracic diameter on Chest X ray -PA view.	
International Pediatric	СТ	4 stages	J Clin Oncol. 2015;33(18):2112-2118.
Non-Hodgkin Lymphoma		Single LN (exclusion of abdomen/chest)	
Staging System			
(IPNHLSS)		• ≥ 2 LN both sides of diaphragm/ chest involvement	
		CNS/ bone marrow involvement	
La Fougere et al, 2006	PET-CT	7 regions: cervical, thoracic, abdominal, pelvic, bone marrow, extra-nodular and spleen.	Eur J Nucl Med Mol Imaging.
			2006;33:1417-1425
Freudenberg et al, 2004	PET-CT	11 regions: cervical, supraclavicular, paratracheal, mediastinal, hilar, axillary, coeliac, para-aortic, mesenteric, iliac and inguinal	Eur J Nucl Med Mol Imaging.
		Four anatomical groups: (1) head and neck, (2) chest, (3) abdomen and (4) pelvis.	2004;31:325-329
EuroNet-PHL	CT or MRI	Bulky disease: Volume measurements of the contiguous mediastinal Adenopathy >200 mL	Pediatr Radiol. 2019;49(11):1545-1564
		software-based volumetry	
		multiplanar volume reconstruction : (AxBxC)÷2	
Brennan et al	СТ	Thorax (8 regions): anterior mediastinum, right paratracheal, right tracheobronchial, left paratracheal, left tracheobronchial,	Am J Roentgenol. 2005;185(3):711-
	WB-MRI	aortopulmonary window, subcarinal, and epicardial regions	716.
		Abdomen (5 regions): Paraaortic, mesenteric, iliac and pelvic sidewall, inguinal, visceral	
Sabri et al	MRI	Thorax (10 regions): Paratracheal, Prevascular, Paraaortic, Subaortic, Hilar, Sub carinal, Para esophageal, Cardiophrenic, Internal	Egypt J Radiol Nucl Med 2021; 52: 215
		mammary, Supra clavicular	
Present study	СТ	Thorax (10 regions)	
		Abdomen (10 regions)	

Conclusions

Semiquantitative scoring of lymph nodal distribution

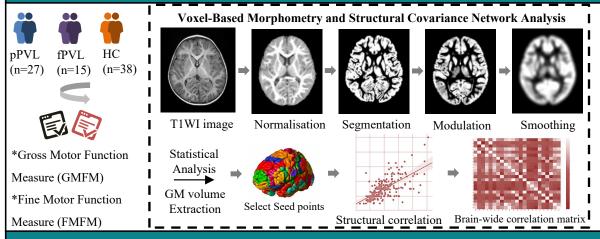
- A better estimate of extent of disease
 - offers both diagnostic and prognostic value

Limitations

- low number of included patients
- CT instead of PET-CT
- the non-inclusion of cervical lymph nodes
- Did not assess interobserver agreement

Abstract No.: 129

Title: Milder Motor Impairment is Associated with Less Extensive Thalamic Damage in Full-term Children with PVL


Author(s): Jieqiong Lin, Hongwu Zeng

Affiliation(s): Shenzhen Children's Hospital

Background

- Periventricular leukomalacia (PVL) is a common neuroimaging feature in individuals with spastic cerebral palsy. Difference in microscopic alterations in grey matter (GM) between premature and full-term children with PVL is still unclear.
- To investigate the impact of ischemic and hypoxic events on microstructure through analyzing GM changes in cerebral palsy patients with PVL, including premature PVL(pPVL) and full-term PVL (fPVL).

Purpose and Methods

Results & Conclusion(s)

- ➤ Compared to the HC, there were reductions of total intracranial volume, GM, and white matter (WM) volume in the pPVL group, also reduced volume in bilateral thalamic; only reduced volume in the left thalamic volume within the fPVL group (p<0.001).
- Correlation analysis showed a stronger association of thalamic volume changes with postcentral gyrus, SMA, gross motor function scores in pPVL groups. Superior parietal lobule,

Table 1 Regions of significant volume differences between PVL and Healthy controls (HC > PVL)

Anatomical Region	MNI coordinates			voxel	p-value FWE	
	X	Y	Z		corrected	
PVL versus HC						
Left thalamus	-29	-21	29	2460	<.0001	
Right thalamus	27	-33	30	2298	<.0001	
pPVL versus HC						
Left thalamus	-14	-21	9	2446	<.0001	
Right thalamus	17	-23	15	2342	<.0001	
fPVL versus HC						
Left thalamus	-9	-21	11	2044	<.0001	
Left Lentiform Nucleus	-20	-4	7	172	<.0001	

Cluster threshold set at 100 voxels using p<.0001;Brain regions are based on AAL atlas. FWE, family wise error; MNI, Montreal Neurological Institute

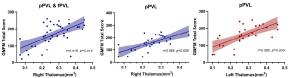


Fig 4. Correlation between GM volume and motor scores in PVL and PVL subtypes hemisphere in pPVL group tends to decrease.

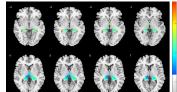
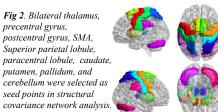



Fig 1. Comparison
of GM volumes
between the whole
PVL group and HC
group at a threshold
of P<0.0001 (FWE
corrected).

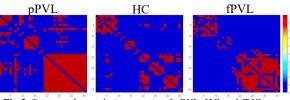


Fig 3. Structural correlation matrix of pPVL, HC and fPVL group according to the selected seed points in brain regions.

- Compared with the HC group, the structural association of gray matter volume between right thalamus and right posterior central gyrus increased in pPVL group, and the structural association between thalamus and cerebellar hemisphere increased in fPVL group.
- Compared with the fPVL group, the structural association between right thalamus-cerebellar hemisphere in pPVL group tends to decrease.

Conclusions: Preterm and full-term PVL children have different thalamic volume changes, as well as abnormalities in the structural covariance network associated with the thalamus.

Abstract No.: 24

Abstract Title: A Pictorial Review of Cardiac MRI Features in Post COVID-19 Vaccine Acute Myocarditis

Authors: Dr. CT Wang, Dr. HL Tsui, Dr. PY Chu, Dr. YH Hui, Dr. YW Hon Affiliation: Department of Radiology & Organ Imaging, United Christian Hospital

Background

Post COVID-19 vaccine acute myocarditis was reported since commencement of vaccination program in Hong Kong. Cardiac MRI (CMR) played a key role in diagnosis.

Purpose and Method

- To review myocardial injury pattern after COVID-19 vaccine on CMR.
- Patients under 18 years old with clinically suspected post COVID-19 vaccine acute myocarditis were included between 1/1/2021 and 28/2/2023. CMR images were reviewed with reference to Lake Louise Criteria 2009.

Lake Louise Criteria 2009 1. Edema → Regional or global signal intensity (SI) increase in T2-weighted Main images. criteria CMR 2. Hyperaemia/ Capillary Leak → Regional or global early Gadolinium (Confirmed) enhancement in T1-weighted images. 3. Necrosis/ Fibrosis → At least one focal lesion with non-ischaemic regional distribution on late Gadolinium enhancement. Level of evidence in Left ventricular dysfunction diagnosing myocarditis

criteria

1. Left ventricular dystulication 2. Pericardial involvement

❖ If at least 2 out of 3 main criteria present → consistent with acute myocarditis

❖ If only 1 out of 3 main criteria present → still suggestive of acute myocarditis in appropriate clinical scenario and supportive criteria

Results & Conclusion

criteria

of 3

with

criteria 1

main

of 3 1

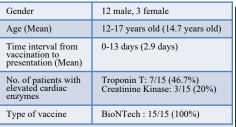
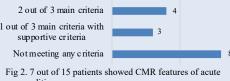



Table 1. Characteristics of the 15 patients with clinically suspected post COVID-19 vaccination myocarditis

Fig 1. Symptoms of the 15 patients after BioNTech vaccine.

myocarditis.

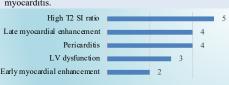


Fig 3. CMR features of the 7 patients with acute myocarditis.

Recognising Cardiac MRI features of post COVID-19 vaccine myocardial injury pattern with clinical and biochemical evidence of acute myocarditis will facilitate prompt treatment in our paediatric patients.

Reference: The authors have no conflict of interest to disclose with respect to this presentation. I Fronza, M., Thavendramathan, P., Cham, V., Kaurr, G. R., Lodell, J. A., Wald, R. M., Hong, R., & Hammenna, K. (2022, September), Jostal and In Joseph (1) A. (2021). A wild, R. M., Hong, R. & Williammenna, K. (2022, September), Joseph (2021). A wild of the present o

Fig 4. 16/F with palpitation.

A-B. T2-weighted dark blood short axis view Transmural global T2 hyperintensity seen within myocardium.

C-D. T1-weighted short axis view with Gadolinium enhancement Patchy early Gadolinium enhancement at basal anterior. basal anteroseptal, basal inferior and apical septal

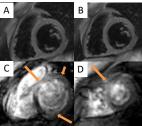
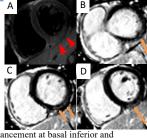
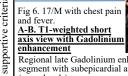
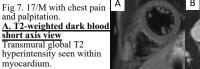



Fig 5. 13/M with chest pain and fever. A. T2-weighted dark blood


segments (arrows).

short axis view. Transmural T2 hyperintensity seen within myocardium at basal inferior segments (arrowheads).

B-D. T1-weighted short axis view with Gadolinium enhancement


Regional late Gadolinium enhancement at basal inferior and basal infero-lateral segments (arrows) with subepicardial or midwall involvement.

Regional late Gadolinium enhancement at basal infero-lateral segment with subepicardial and midwall involvement (arrowheads).

Abnormal pericardial thickening with late Gadolinium enhancement indicates pericarditis (arrows).

Fig 7. 17/M with chest pain and palpitation. A. T2-weighted dark blood short axis view

B. T2-weighted 4 chamber view Mild pericardial effusion (arrows).

Abstract No. 8

Milky CSF? A Rare Case of Catheter-related Extensive IVC Thrombosis in a Neonate

Dr Leanne HQ Chin¹, Dr Derek LH Chan¹, Dr Christy YK Mak², Dr Christopher CH Tong², Dr Khair Jalal², Dr Alan KS Chiang² Department of Radiology, Queen Mary Hospital, Hong Kong SAR

²Department of Paediatrics & Adolescent Medicine, Queen Mary Hospital, Hong Kong SAR

Background:

Neonatal inferior vena cava (IVC) thrombosis can result from extrinsic compression from oncologic pathology, iatrogenic thrombus or in-utero thrombosis. Due to broad and non-specific clinical presentation, epidemiology remains indeterminate, which may mean a significant portion are underrecognized but has significant implications on short- and long-term morbidity and mortality.

Objectives & Methods: Case report

In this exhibit, we report an unusual presentation of IVC thrombosis secondary to **repeated** central venous catheter (CVC) insertion (Fig I) in a preterm neonate, presenting with sepsis, generalized oedema, abdominal distension and dilated superficial abdominal veins. Septic workup including lumbar puncture yielded abnormal milky content (Fig 2), suspicious for total parenteral nutrition (TPN) extravasation.

Initial imaging including ultrasound (US) and magnetic resonance imaging (MRI) of lumbosacral (L-S) spine was unrevealing except for relatively prominent epidural venous plexus. However, further scrutiny of the retroperitoneal area in the included field of view (FOV) of MRI revealed absence of IVC flow void with irregular contour and T2 heterogeneity (Fig 3).

Fig 1: Abdominal x-ray shows right lower extremity peripherally-inserted central venous catheter (PICC) with tip at around L4/5 level.

Fig 2: Lumbar puncture yielded abnormal milky content, suspicious for TPN extravasation.

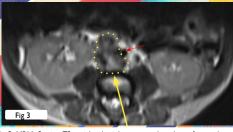
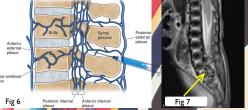


Fig 3: MRI L-S spine T2-weighted axial sequence show loss of normal flow void (dashed area) with irregular distension and mixed T2 heterogeneities of the IVC (yellow arrow). Normal flow void seen in abdominal aorta (red arrow).

Subsequent dedicated MRI venogram and doppler US confirmed extensive infra-renal iliocaval thrombosis with development of secondary venous collaterals (Fig 4-5).

Why was "milky" aspirate obtained during lumbar puncture?

Fig 4 (left): US doppler shows echogenic filling defects in the infrarenal IVC with absence of doppler flow.


Fig 5 (right): MRI venogram shows absent infra-renal IVC with multiple dilated venous collaterals draining via the deep azygoshemiazygos pathway (red arrows), as well the superficial pathway (green arrows). Note the normal supra-renal IVC (yellow arrow) and bilateral renal veins (orange arrows)

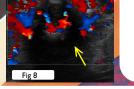


Fig 6: Pictorial diagram of the venous anatomy during a lumbar puncture.

Fig 7: MRI L-S spine sagittal T2-weighted sequence shows dilated epidural venous plexus at lower thecal sac.

Fig 8: US spine shows corresponding dilated epidural and paravertebral venous plexus on doppler imaging.

The plausible explanation for presence of "milky/TPN" aspirate during lumbar puncture was likely related to the puncturing of the abnormally dilated epidural venous plexuses which had led to paucity of accessible CSF space (Fig 6-8) The tip of the PICC inserted through the right lower extremity has also likely entered via the deep paravertebral venous collaterals rather than within the expected IVC location.

Conclusion:

This exhibit presents a rare and peculiar case of iatrogenic neonatal IVC thrombosis, providing an educational radiological review of anatomy, collateral venous pathway systems and the intriguing relationship between atypical clinical presentation and radiological features. A high index of suspicion for underlying deep venous thrombosis should be sought, especially in patients with indwelling vascular catheters, to ensure timely treatment.