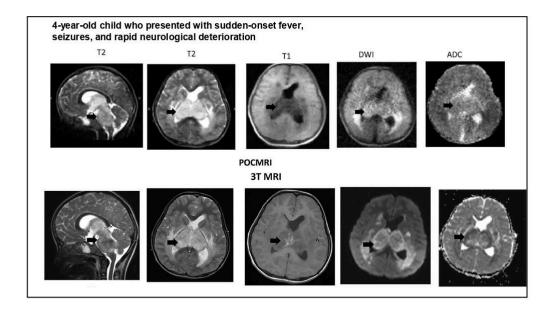
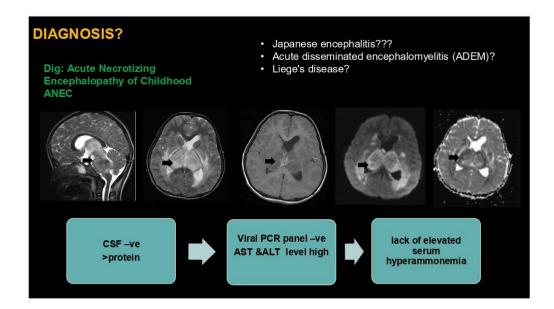
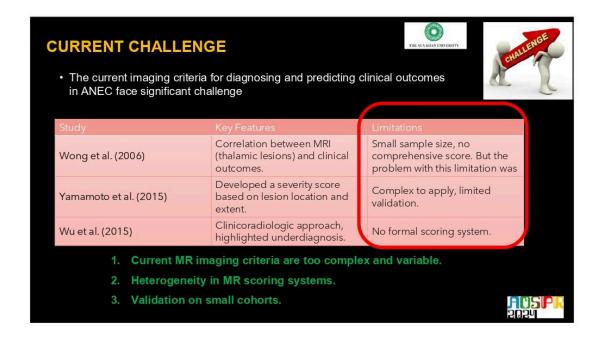


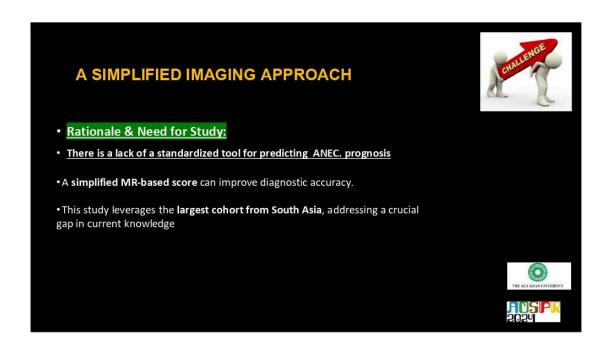
Clinical Prognostication in Acute Necrotizing Encephalopathy of Childhood: Role of MR Imaging Severity Assessment

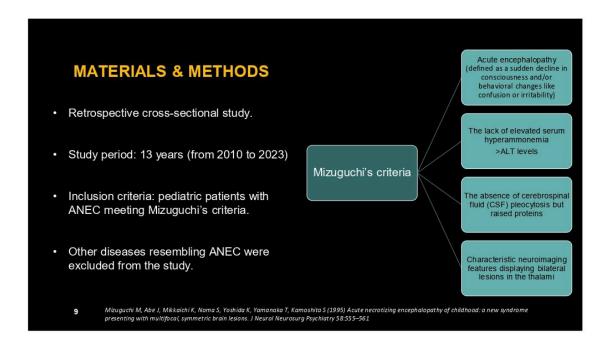

Kiran Hilal


Department of Radiology, Aga Khan University Hospital, Karachi, Pakistan

22nd Annual Scientific Meeting of Asian and Oceanic Society for Pediatric Radiology (AOSPR) 2024







IMAGING ASSESSMENT

- · MR Imaging Examination and Score Development:
- · Two pediatric radiologists independently assessed MR imaging variables.
- Developed a simplified MR-based imaging score for acute necrotizing encephalopathy by integrating and modifying approaches from Wong et al. and Ibrahim et al.
- Wong AM, Simon EM, Zimmerman RA, Wang HS, Toh CH, Ng SH (2006) Acute necrotizing encephalopathy of childhood: Correlation of MR findings and clinical
 outcome. AJNR Am J Neuroradiol 27:1919-1923.
 Ibrahim RSM, Etayat W, Seif HM, Er-Kiki HA, Emad-Eldin S, Shahim M, Kamel SM, Osama R, Zakaryla R, Fatouh M, Hachem RH (2020) Multi-parametric magnetic
 resonance imaging in acute necrotizing encephalopathy of children: validity and prognostic value. Egypt J Radiol Nucl Med 51:113.

IMAGING SCORE

1. Imaging Severity Markers:

- 1. Hemorrhage
- 2. Cavitation
- 3. Enhancement,
- 4. Diffusion Restriction

2. <u>Involvement of key anatomical</u> regions:

- 5.Basal ganglia
- 6. Cerebellum
- 7.Brainstem
- 8.Cerebral white matter

We initially associated these parameters with clinical outcomes and found that diffusion restriction and cerebellar involvement were the most significant.

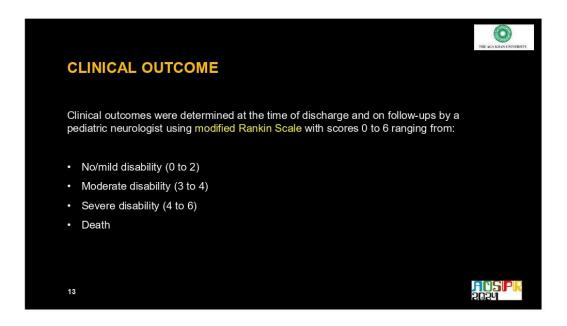
- These were given 2 points each, while other parameters were given 1 each.
- The total score, ranging from 0 to 10, was categorized into mild (0-3), moderate (4-7), and severe (8-10).

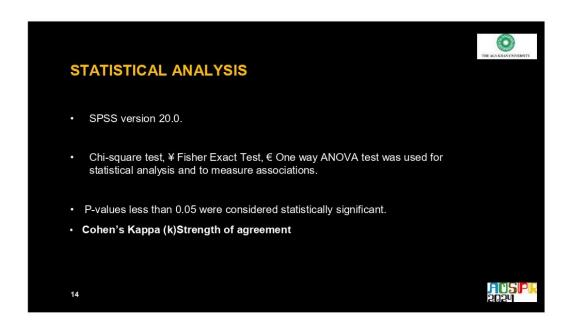
Cavitation

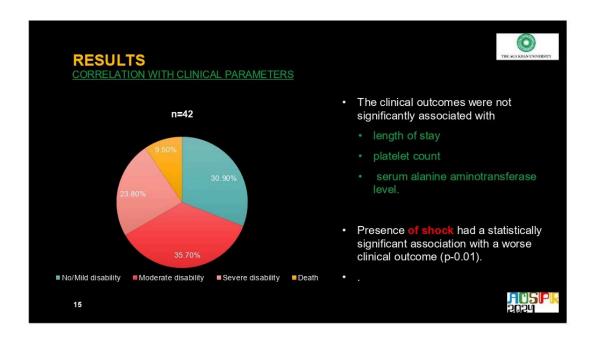
cavitation was defined as incise lesions rawing strainpy defined inargins, and OSF intensity with hypointense signal on T1-weighted images and hyperintensity on T2 weighted images with rim enhancement on post contrast images.

Diffusion restriction

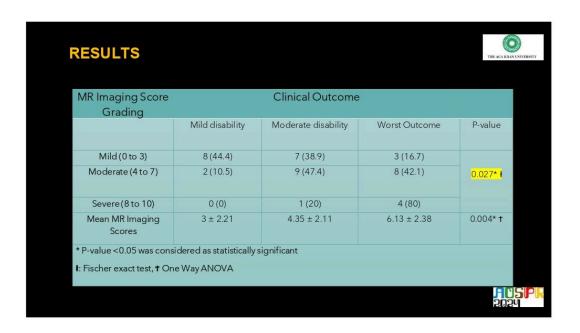
Diffusion restriction was defined by cytotoxic edema appearing bright on diffusion weighted sequences (DWI) and showing dropout on corresponding apparent diffusion coefficient (ADC) maps.

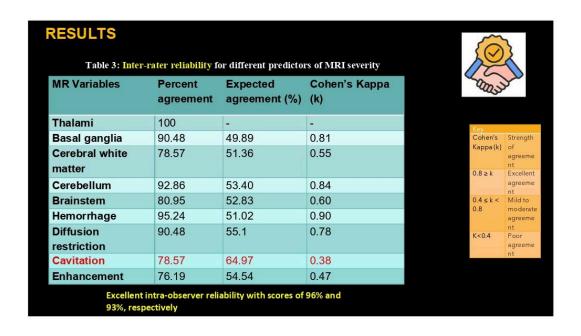

Hemorrhage

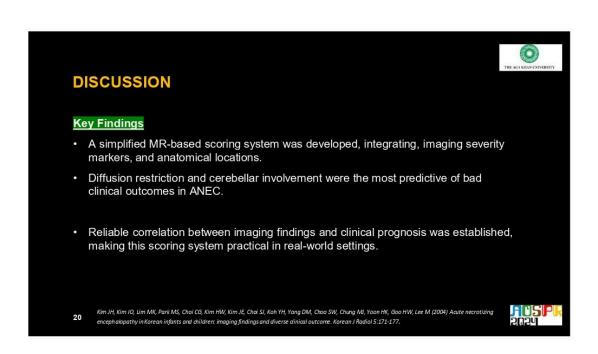

The presence of hemorrhage was defined as either petechial or macro-hemorrhages showing signal dropout on SWI seguences.

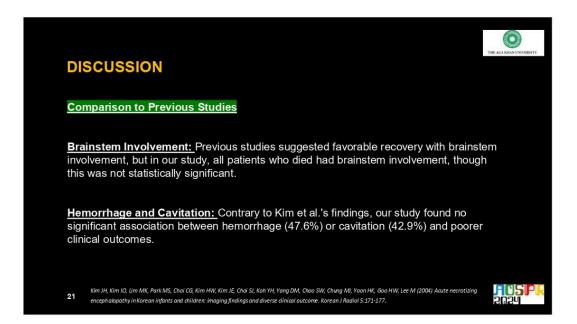


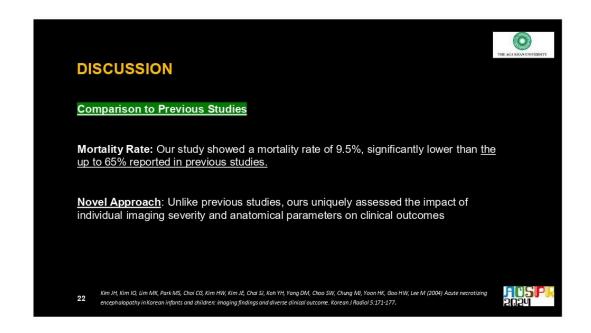
Enhancement

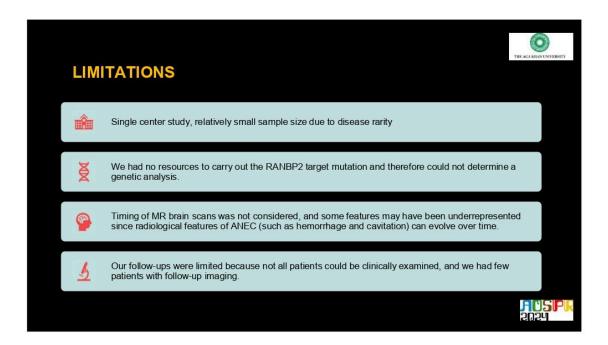

Enhancement was considered positive and defined as either rim enhancement

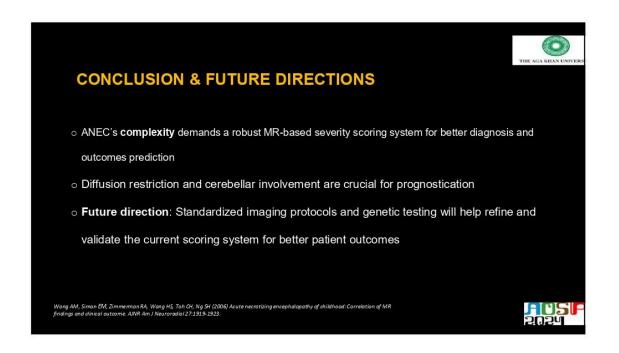





RESULTS										
Table 2: MR findings and associations with clinical outcome in patients with acute necrotizing										
encephalopathy of childhood.										
	No/Mild Disability (n=13)	Moderate Disability (n=15)	Severe Disability (n=10)	Death (n=4)	P-value					
Basal Ganglia	07 (53.8%)	09 (60%)	04 (40%)	03 (75%)	0.6*					
Cerebral White Matter	09 (69.2%)	08 (53.3%)	09 (90%)	03 (75%)	0.2‡					
Cerebellum	07 (53.8%)	03 (20%)	03 (30%)	03 (75%)	0.05* [¥]					
Brainstem	10 (77%)	09 (60%)	07 (70%)	04 (100%)	0.5 [‡]					
Mamillary Bodies	01 (7.7%)	01 (6.7%)	0 (0.0%)	01 (25%)	0.5 [‡]					
External Capsule	03 (23.1%)	05 (33.3%)	04 (40%)	02 (50%)	0.6 [‡]					
Hemorrhage	06 (46.2%)	07 (46.7%)	04 (40%)	03 (75%)	0.7 [¥]					
Cavitation	05 (38.5%)	05 (33.3%)	05 (50%)	03 (75%)	0.4*					
Enhancement	06 (46.1%)	07 (46.7%)	02 (20%)	03 (75%)	0.2*					
Diffusion Restriction	07 (53.8%)	12 (80%)	09 (90%)	04 (100%)	0.03* [‡]					
* P-value <0.05, ¥ Chi-square test, t Fisher Exact Test										



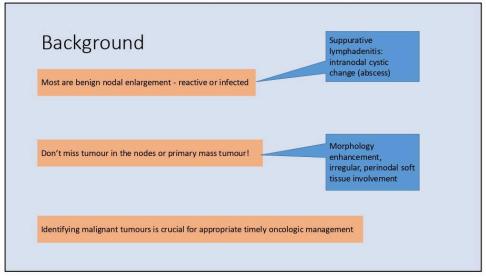


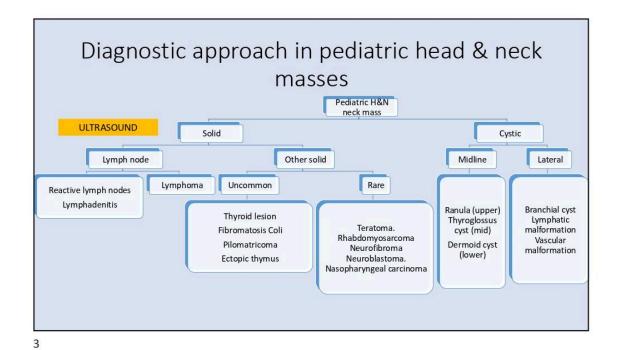


A Pictorial Review of Paediatric Head and Neck Masses

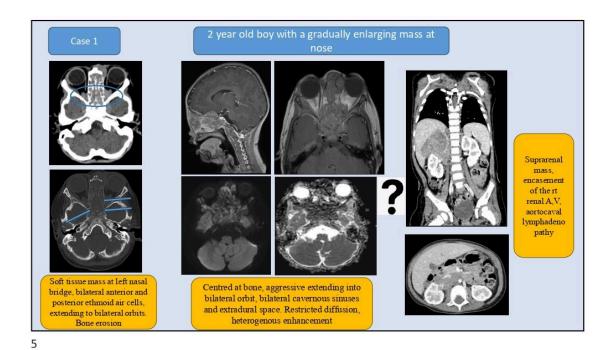
Nadia Fareeda Muhammad Gowdh^{1,2,3}, Faizah Mohd Zaki², Rohazly Ismail³

- ¹ Biomedical Imaging Department, Faculty of Medicine, Universiti Malaya, Malaysia
- ² Radiology Department, Children Specialist Hospital, Universiti Kebangsaan Malaysia, Malaysia
- ³ Radiology Department, Hospital Tunku Azizah, Kuala Lumpur, Malaysia

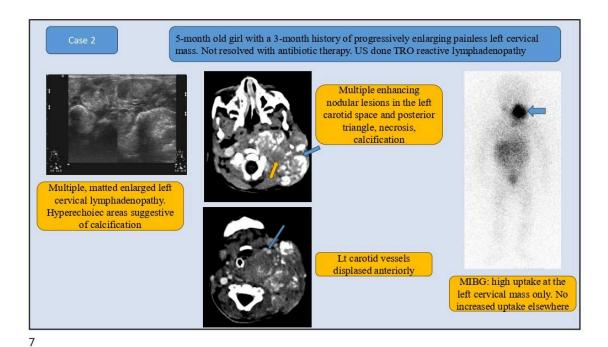

22nd Annual Scientific Meeting of Asian and Oceanic Society for Pediatric Radiology (AOSPR) 2024


A pictorial review of pediatric head and neck masses

Nadia Fareeda Muhammad Gowdh^{1,2,3}, Faizah Mohd Zaki², Rohazly Ismail³

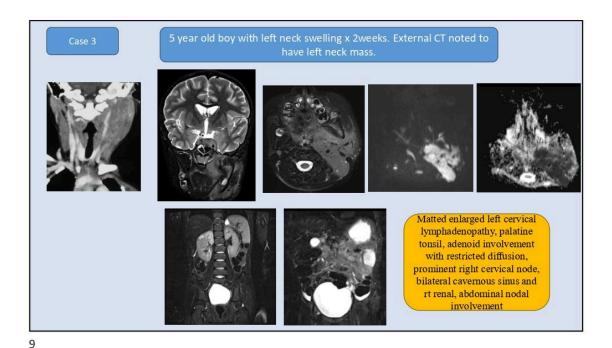

Biomedical Imaging Department, Faculty of Medicine, Universiti Malaya, Malaysia Radiology Department, Children Specialist Hospital, Universiti Kebangsaan Malaysia, Malaysia Radiology Department, Hospital Tunku Azizah, Kuala Lumpur, Malaysia

1



Diagnostic approach in pediatric head & neck masses Pediatric H&N neck mass **ULTRASOUND** Solid Cystic Other solid Midline Lateral Lymph node Lymphoma Uncommon Rare Reactive lymph nodes Lymphadenitis Branchial cyst Ranula (upper) Thyroid lesion Thyroglossus Lymphatic Teratoma. Fibromatosis Coli cyst (mid) malformation Rhabdomyosarcoma Dermoid cyst Vascular Pilomatricoma Neurofibroma malformation Neuroblastoma. (lower) Ectopic thymus Nasopharyngeal carcinoma

Neuroblastoma Sympathetic primitive cells (neuroblasts) Neck, posterior mediastinum, retroperitoneum, adrenals and pelvis 8%-10% of all childhood cancer1 3rd commonest paediatric malignancy after leukaemia and brain malignancies Mass with bony Age: Median age 22 months (majority < 10 years)1 erosion in a ' young child- think Presentation: enlarging painless mass, symptoms due to compression US/CT: Heterogenous mass with necrosis, Ca2+, vessel encasement, lifting of the aorta, nodal enlargement MRI: intracranial, intraspinal, cranial nerve, bone marrow involvement Nuc med: MIBG avid (MIBG is a norepinephrine analog), FDG-PET avid INRG staging system (L1, L2, M, Ms) IDRF: INRG Task Force Report Monclair 2009 Tx: surgery +/- chemo, bm transplant

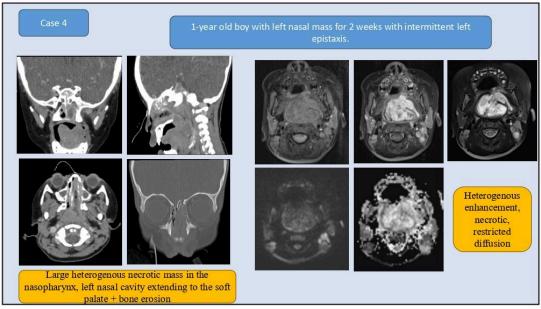

Incidence of primary cervical neuroblastoma: < 5% of all neuroblastomas²

Arises from the superior cervical ganglion behind the ICA
Posterior to the vascular sheet, displacing the carotid artery, IJV anteriorly

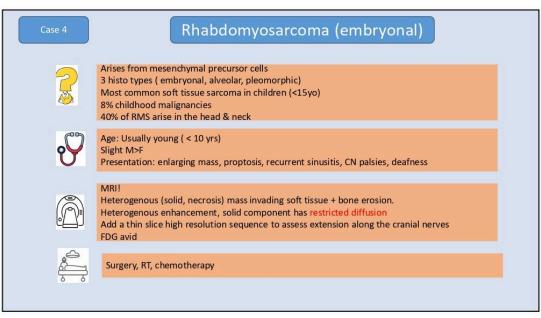
Age: More common in infants²
Presentation: Enlarging painless lateral neck mass, symptoms due to compression
Ds pattern: Aggressive behavior - can invade the cranial nerves

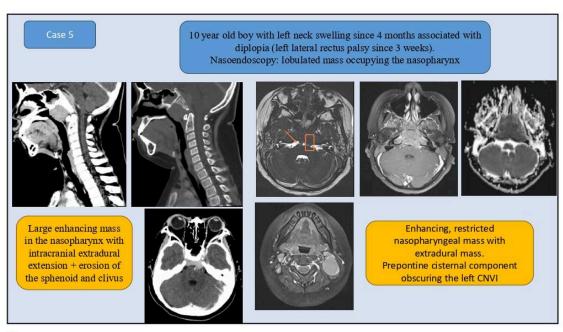
Ultrasound usually primary imaging tool
CT/MRI for further characterization (MRI superior)

Tx: surgery
Favourable outcome of infant neuroblastoma.
The overall five-year survival rate of cervical neuroblastoma is around 90% ²

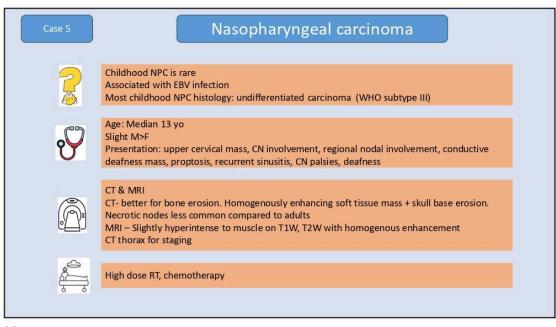


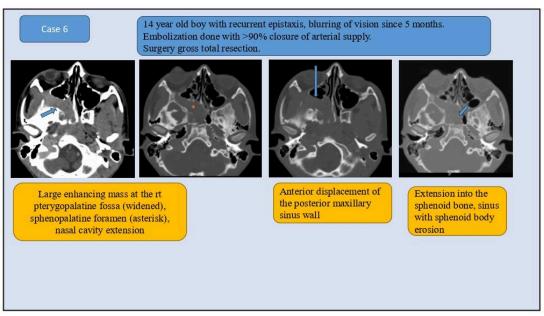
Aggressive B-cell lymphoma predominantly affecting children
Most common (40%) type of non-Hodgkin lymphoma in childhood

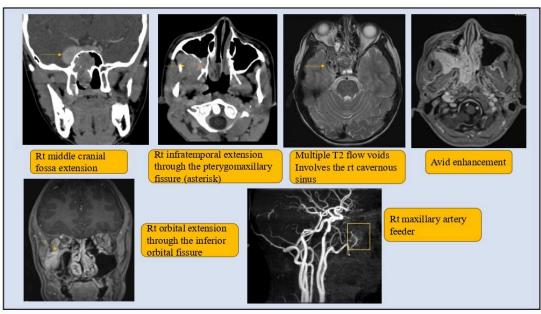

Age: Median age is 8 years⁴
Male predominance (M:F = 4:1)
Presentation: enlarging mass
Beware of airway compromise!

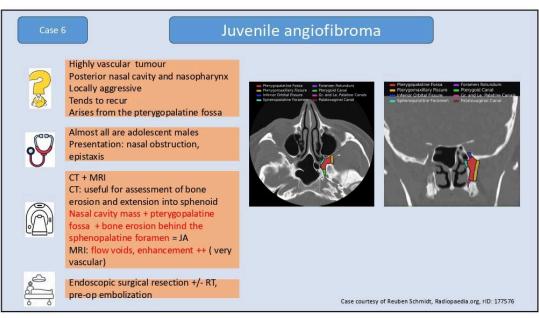

Ultrasound, CT/MRI
Solid lobulated mass, predilection for the Waldeyer's ring, restricted diffusion (highly cellular),
T2W isointense (highly cellular), homogenous enhancement
(absence of necrosis and bone destruction supports Burkitt's lymphoma)⁵

Curable, highly sensitive to chemotherapy




11




13

15

17

Key points

- Look for restricted diffusion -it can guide diagnosis
- Look at the extent of the tumour- it can insinuate (thin slice volumetric images are useful)
- Consider primary tumour or metastasis (in a young children with a lesion centred at bone always screen the abdomen for neuroblastoma)
- If multifocal tumours, think of an underlying genetic cancer predisposition syndrome
- Also consider differentials such as abscess (think of TB in our population)

Conclusion

Imaging plays a key role in diagnosis and follow-up of pediatric head and neck masses

Recognizing the imaging characteristics will improve diagnostic confidence and facilitate prompt diagnosis and management of malignant tumours

19

References

- Lonergan GJ, Schwab CM, Suarez ES, Carlson CL. From the archives of the AFIP: neuroblastoma, ganglioneuroblastoma, and ganglioneuroma: radiologic-pathologic correlation. Radiographics. 2002 Jul;22(4):911-34.
- Csanády M, Vass G, Bartyik K, Majoros V, Rovó L. Multidisciplinary management of cervical neuroblastoma in infants. International journal of pediatric otorhinolaryngology. 2014 Dec 1;78(12):2103-6
- Haddad M, Triglia JM, Helardot P, Couanet D, Gauthier F, Neuenschwander S, Bourlière B, Bergeron C, Munzer C, Rubie H, Guys JM. Localized cervical neuroblastoma: prevention of surgical complications. International journal of pediatric otorhinolaryngology. 2003 Dec 1;67(12):1361-7.
- Biko DM, Anupindi SA, Hernandez A, Kersun L, Bellah R. Childhood Burkitt lymphoma: abdominal and pelvic imaging findings. American Journal of Roentgenology. 2009 May;192(5):1304-15.
- 5. Derinkuyu BE, Boyunağa Ö, Öztunalı Ç, Tekkeşin F, Damar Ç, Alımlı AG, Okur A. Imaging features of Burkitt lymphoma in pediatric patients. Diagnostic and Interventional Radiology. 2016 Jan;22(1):95
- Lloyd C, McHugh K. The role of radiology in head and neck tumours in children. Cancer Imaging. 2010;10(1):49.
- 7. The Radiology Assistant. https://radiologyassistant.nl/head-neck/neck-masses/neck-masses-in-children#introduction-diagnostic-approach

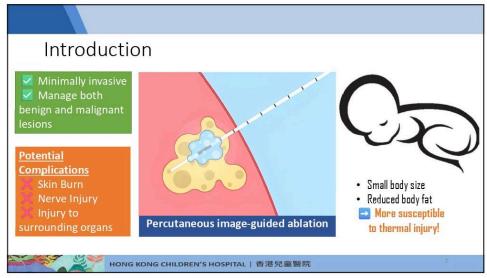
Preventing Thermal Injury in Percutaneous Image-guided Ablation in Children - How Useful are Thermo-protective Strategies? A 5-year Retrospective Review

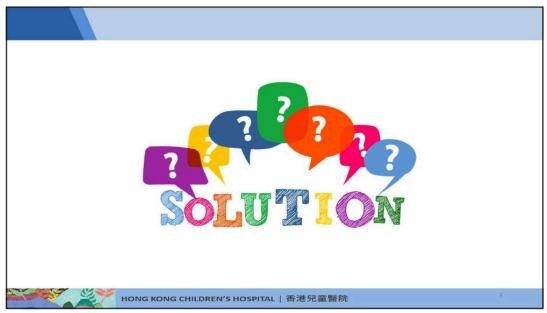
Way Loon Jonathan CHEN¹, Kin Fen Kevin FUNG¹, Hing Yan Danny CHO², Elaine Kan¹

- ¹ Department of Radiology, Hong Kong Children's Hospital, Hong Kong
- ² Department of Diagnostic and Interventional Radiology, Kwong Wah Hospital, Hong Kong SAR

22nd Annual Scientific Meeting of Asian and Oceanic Society for Pediatric Radiology

> Preventing Thermal Injury in Percutaneous Image-guided Ablation in Children - How Useful are Thermo-protective Strategies? A 5-year retrospective review

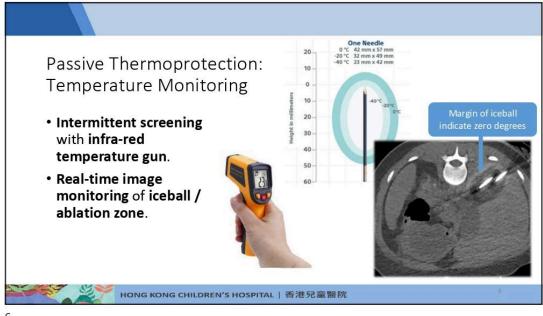

Way Loon Jonathan CHEN 1 , Kin Fen Kevin FUNG 1 , Hing Yan Danny CHO 2 , Elaine KAN 1

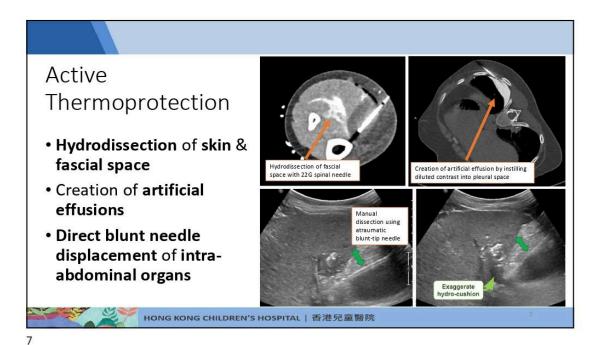

1- Department of Radiology, Hong Kong Children's Hospital, Hong Kong

2 - Department of Diagnostic and Interventional Radiology, Kwong Wah Hospital, Hong Kong SAR

COI Disclosure: I have no personal or financial interests to declare: I have not any commercial or associative interest that represents a conflict of interest in connection with this presentation.

HONG KONG CHILDREN'S HOSPITAL | 香港兒童醫院




3

5

Active Thermoprotection
(cont.)

• Warm gloves applied to skin surface.

HONG KONG CHILDREN'S HOSPITAL | 香港兒童醫院

Purpose

To evaluate the utility of thermo-protective measures in preventing thermal injury during ablation in the paediatric population.

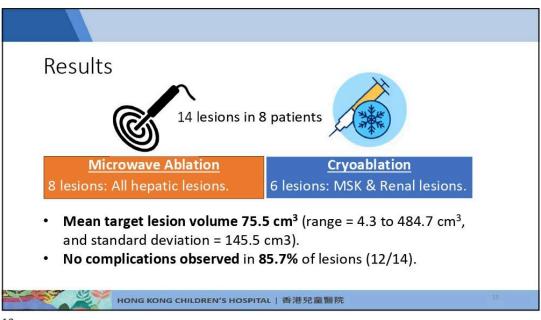
HONG KONG CHILDREN'S HOSPITAL | 香港兒童醫院

9

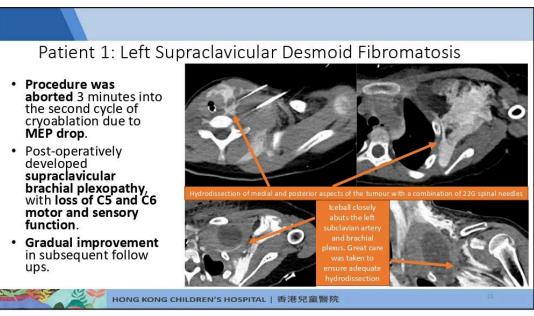
Materials and Methods

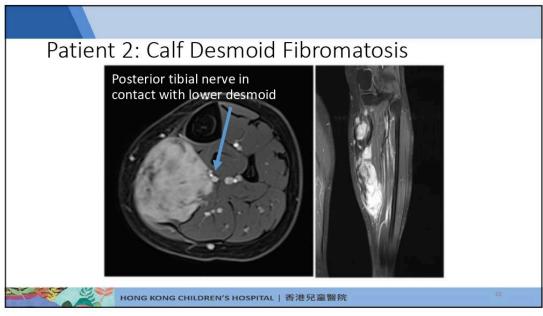
- Retrospective review.
- All patients undergoing image-guided percutaneous ablation of soft tissue lesions at our tertiary children's hospital from June 2019 to June 2024.
- All patients underwent cross-sectional imaging with CT or MRI prior to, and after the procedure.

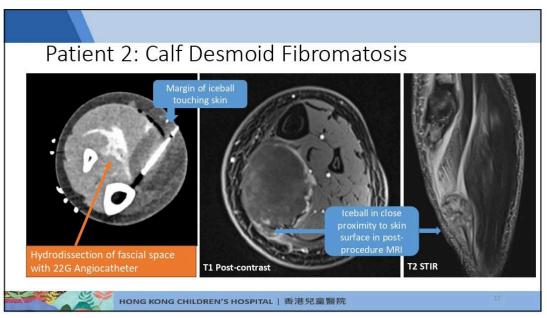
Materials and Methods


Parameters assessed:

- Indications for image-guided percutaneous ablation: included both neoplastic and non-neoplastic conditions for which ablation was performed either as a definitive or palliative therapy.
- · Modality of percutaneous ablation.
- Lesion characteristics: ie location, size, volume, proximity to adjacent structures / organs.
- Thermoprotective strategies deployed: ie active vs passive.
- Complications.
- Clinical Outcomes.


HONG KONG CHILDREN'S HOSPITAL | 香港兒童醫院


	Lesion number	Location	Pathology	Volume (cm³)	Type of Ablation	Complications (Y/N)
Results	1	Posterior Rib	Osteosarcoma	4.3	Cryoablation	N
	2	Anterior Rib	Osteosarcoma	5.6	Cryoablation	N
	3	Left Calf	Desmoid tumour	270.6	Microwave Ablation	N
	4	Kidney	Indeterminate renal lesion	8.5	Cryoablation	N
	5	Liver	Hepatic Adenoma	14.7	Microwave Ablation	N
	6	Liver	Hepatic Adenoma	8.0	Microwave Ablation	N
	7	Liver	Hepatic Adenoma	8.0	Microwave Ablation	N
	8	Liver	Hepatic Adenoma	8.0	Microwave Ablation	N
	9	Liver	Hepatic Adenoma	4.0	Microwave Ablation	N
	10	Liver	Hepatic Adenoma	6.2	Microwave Ablation	N
	11	Liver	нсс	8.6	Microwave Ablation	N
	12	Liver	HCC	11.3	Microwave Ablation	N
	13	Supraclavicular fossa	Desmoid tumour	215.0	Cryoablation	Y
	14	Left Calf	Desmoid Tumour	484.7	Cryoablation	Y
	W S	HONG KONG	CHILDREN'S HOSPIT	AL 香港兒童器	院	12



13

17

Discussion

- Thermoprotective strategies were generally effective in preventing thermal injury related complications.
- Complications were observed in lesions with larger tumour volume and those which tumour debulking was the treatment goal (vs total removal).

Limitations

- Small cohort.
- · Heterogeneous spectrum of lesions.
- Confounding factors.

HONG KONG CHILDREN'S HOSPITAL | 香港兒童醫院

19

Key Takeaways

- Careful pre-operative planning for optimal ablation zone size.
- Utilization of the various thermoprotection techniques on a case-by-case basis.
- Visualisation of ablation zone: improves predictability of tumour coverage and prevents non-target ablation.

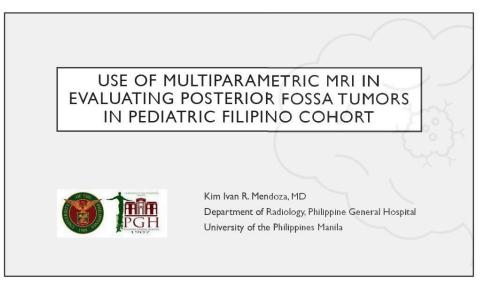
 Actual margin

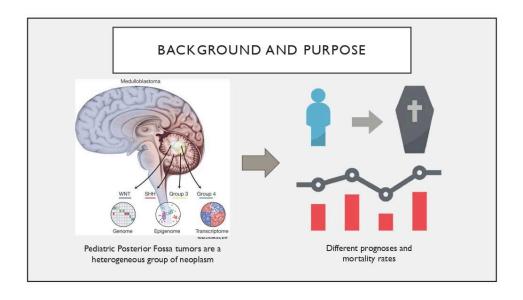
HONG KONG CHILDREN'S HOSPITAL | 香港兒童醫院

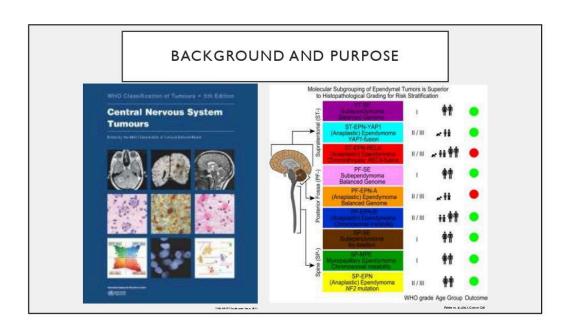
References

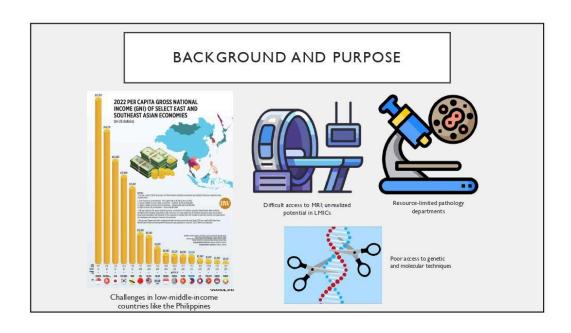
- Filippiadis DK, Binkert C, Pellerin O, Hoffmann RT, Krajina A, Pereira PL. Cirse Quality Assurance Document and Standards for Classification of Complications: The Cirse Classification System. CardioVascular and Interventional Radiology. 2017 Jun 5;40(8):1141–6.
- Anil Nicholas Kurup, Morris JM, Boon AJ, Strommen JA, Schmit GD, Atwell TD, et al. Motor Evoked Potential Monitoring during Cryoablation of Musculoskeletal Tumors. Journal of Vascular and Interventional Radiology. 2014 Nov 1;25(11):1657–64.
- 3. Kumar Kempegowda Shashi, Shahin MM, Johnston P, Shaikh R. Cryoablation for Bone and Soft Tissue Lesions in Pediatric Patients: Complications and Preventive Measures. CardioVascular and Interventional Radiology. 2023 Aug 14;46(9):1249–56.
- 4. Alan Alper Sag, Husain AM. Thermal Protection Strategies and Neuromonitoring during Ablation. Seminars in Interventional Radiology. 2022 Apr 1;39(02):157–61.

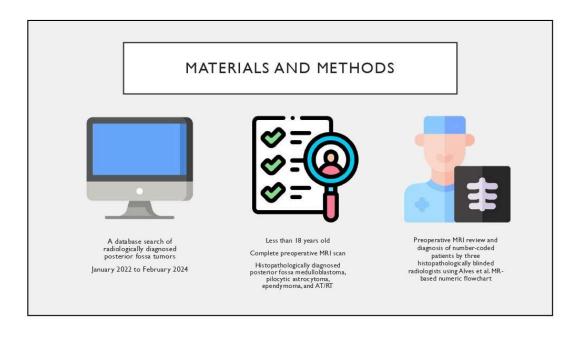
HONG KONG CHILDREN'S HOSPITAL | 香港兒童醫院

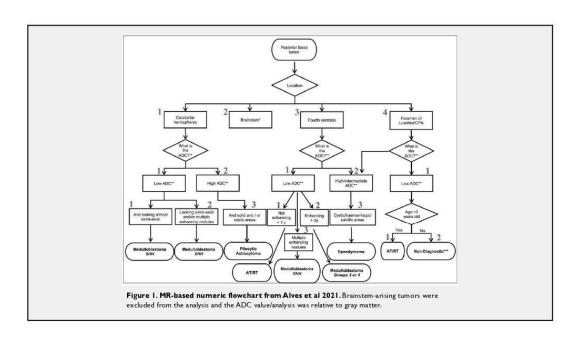

21

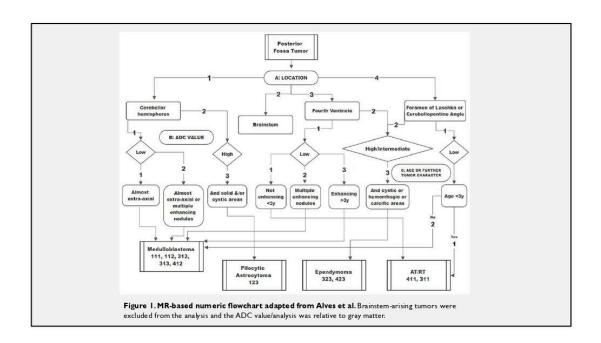



Use of Multiparametric MRI in Evaluating Posterior Fossa Tumors in Pediatric Filipino Cohort

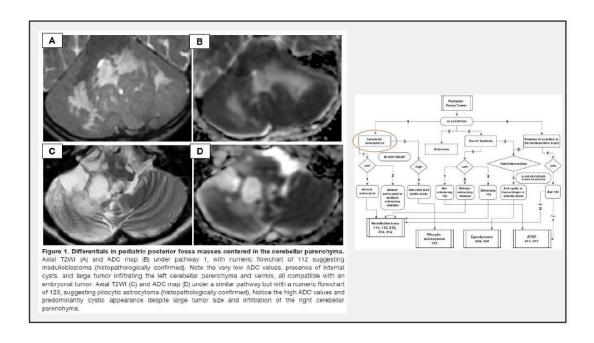

Kim Ivan R. Mendoza, Cyruz Jan B. David, Dan Philippe C. Nicer, Rovi Nino D. Samedra

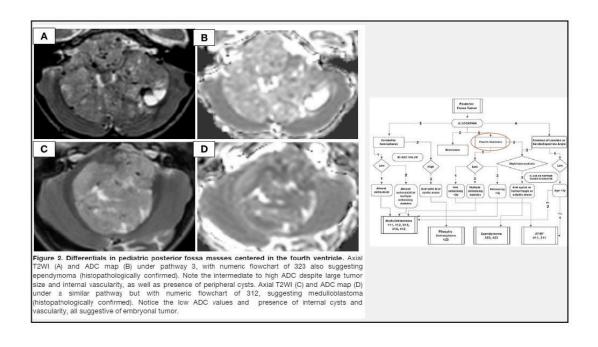

Department of Radiology, University of the Philippines - Philippine General Hospital, Philippines





RESULTS


Table I. Clinicodemographic Characteristics of the Study Population


Characteristic	Overall	Medulloblastoma (N=25, 54.35%)	Pilocytic Astrocytoma (N=10, 21.74%)	Ependymoma (N=10, 21.74%)	AT/RT (N=1, 2.17%)
Age	7 (3–10)	7 (3-10)	8 (3-13)	5.5 (2-8)	0.67
Female	17 (36.96)	5 (20.00)	6 (60.00)	5 (50.00)	1 (100.00)
Location	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
4 th ventricle	29 (63.04)	21 (84.00)	2 (20.00)	5 (50.00)	1 (100.00)
Cerebellar vermis	3 (6.52)	0	3 (30.00)	0	0
Left CPA	4 (8.70)	I (4.00)	0	3 (30.00)	0
Left Cerebellum	2 (4.35)	I (4.00)	0	1 (10.00)	0
Right CPA	1 (2.17)	0	0	1 (10.00)	0
Right Cerebellum	7 (15.22)	2 (8.00)	5 (50.00)	0	0

Characteristic	Overall	Medulloblastoma (N=25, 54.35%)	Pilocytic Astrocytoma (N=10, 21.74%)	Ependymoma (N=10, 21.74%)	AT/RT (N=1, 2.17%
T2 CHARACTER					
Cystic	8 (17.39)	0	8 (80.00)	0	0
Solid	10 (21.74)	10 (40.00)	0	0	0
Solid with hemorrhage	1 (2.17)	0	0	0	1 (100.00)
Solid with large cysts	13 (28.26)	7 (28.00)	2 (20.00)	4 (40.00)	0
Solid with large cysts & necrosis	1 (2.17)	0	0	1 (10.00)	0
Solid with necrosis	1 (2.17)	I (4.00)	0	0	0
Solid with small cysts	12 (26.09)	7 (28.00)	0	5 (50.00)	0
Enhancement			9		
None	4 (8.70)	3 (12.00)	I (I0.00)	0	0
Present	28 (60.87)	14 (56.00)	6 (60.00)	8 (80.00)	0
Present (nodular)	14 (30.43)	8 (32.00)	3 (30.00)	2 (20.00)	1 (100.00)
ADC Value	750.625 (608–1086)	633 (583.75–705.25)	1536.875 (1363.75–1786.25)	1021.625 (873.75–1086)	639.5

Table 2. Statistical Analysis of MR-based numeric flowchart to discriminate posterior fossa tumors

Histopathologic diagnosis	TP	FP	FN	TN	Sn (%)	Sp (%)	PPV (%)	NPV (%)	LR+	LR-
Medulloblastoma	24	1	ı	20	96.00	95.24	96.00	95.24	20.16	0.0420
Pilocytic Astrocytoma	7	1	3	35	70.00	97.22	87.50	92.11	25.20	0.3086
Ependymoma	9	4	ı	32	90.00	88.89	69.23	96.97	8.10	0.1125
AT/RT	0	0	ı	45	0	100.0	-	97.83	-	1.0000

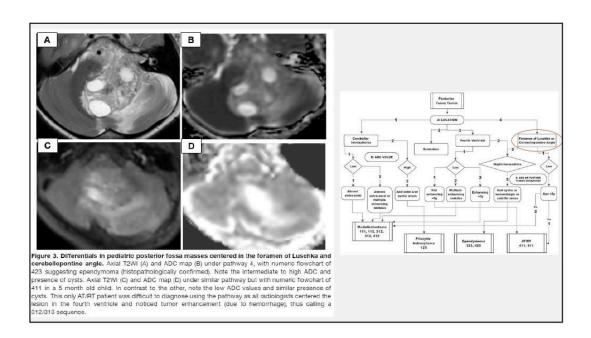


Table 3. Inter-rater Reliability of Pathways and Diagnoses Determined by the General Radiologist or the Resident Radiologist and the Neuroradiologist

		According to	numeric pathway	
Histopathologic diagnosis	General rad	liologist	Resident rac	liologist
	Agreement (%)	Карра	Agreement (%)	Карра
Overall	82.61	0.7881	80.43	0.7590
Medulloblastoma	76.00	0.6637	76.00	0.6495
Pilocytic Astrocytoma	90.00	0.7826	90.00	0.7826
Ependymoma	100.00	1.0000	80.00	0.6875

LIMITATIONS

- The study has some challenges, the main one being its <u>retrospective</u> nature. During image analysis, possible biases were controlled by <u>blinding</u> the MR interpreters with histopathologic diagnosis and <u>strict adherence</u> to the numeric-based flowchart.
- Another limitation of this study is its <u>small sample size</u> and <u>only one patient</u>
 <u>with AT/RT diagnosis</u>, which accounts for our confidence intervals and
 inability to calculate the diagnostic accuracy of pathway 311/411.
- Furthermore, the institution's <u>inability to classify medulloblastoma</u> into its <u>molecular subgroup</u> is a major limitation of this research, in contrast to the successful demonstration by the group of Alves et al.

IN SUMMARY

- This paper is the <u>first-largest cohort studying Filipino pediatric posterior</u> <u>fossa tumors</u>.
- <u>Medulloblastoma</u> is the most common pediatric posterior fossa tumor in our cohort
- The use of an MRI-based numeric pathway taking into account <u>age</u>, <u>location</u>, <u>tumor character</u>, and <u>ADC values</u> is diagnostically accurate in predicting histopathologic diagnosis, and possibly molecular subtype.
- This pathway is <u>easy to replicate</u> among neuroradiologists, general radiologists, and trainees, with substantial to near-perfect agreement.
- This stresses the importance of <u>adequate preoperative MRI evaluation</u> in our patients, as radiology can help <u>augment</u> the <u>resource-limited pathologic capabilities</u> of LMICs like the Philippines.

FURTHER DIRECTIONS

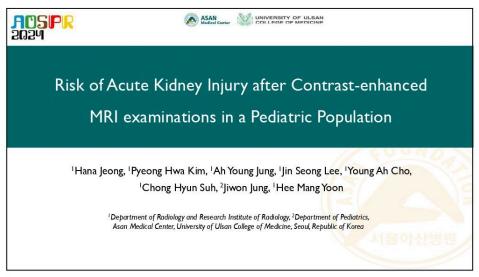
- <u>Collaboration</u> with other institutions can be done to produce a larger, more consistent analysis with an <u>increased sample size</u>, preferably using a <u>prospective</u> study design.
- Having a numeric flowchart that is validated and accurate can lead to the use of <u>radiogenomics</u> and <u>artificial intelligence</u> <u>applications</u>, now emerging fields in pediatric neuro-oncology.

REFERENCES

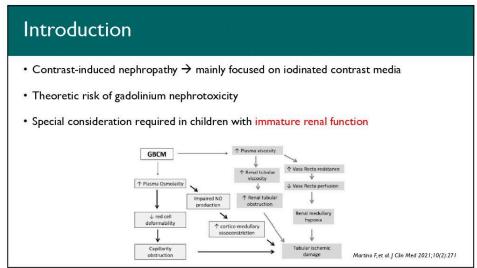
- Northcott PA, Buchhalter I, Morrissy AS, Hovestadt V, Weischenfeldt J, Ehrenberger T, et al. The whole-genome lands cape of medulloblastoma subtypes. Nature. 2017 Jul; 547 (7663):311–7.
- Pajtler KW,Witt H, Sill M, Jones DT, Hovestadt V, Kratochwil F, Wani K, et. al. Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups. Cancer Cell. 2015 May 11;27(5):728-43.
- Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro-Oncology. 2021 Jun 29;23(8).
- Alves C a. PF, Löbel U, Martin-Saavedra JS, Toescu S, Tsunemi MH, Teixeira SR, et al. A Diagnostic Algorithm for Posterior Fossa Tumors in Children: A Validation Study. AJNR American journal of neuroradiology. 2021 May 1;42(5):961–8.
- Hanzlik E, Woodrome SE, Abdel-Baki M, Geller TJ, Elbabaa SK. A systematic review of neuropsychological outcomes following posterior fossa tumor surgery in children. Child's Nervous System. 2015 Sep 9;31 (10):1869–75.
- Orduña P, Cheryl Anne Lubaton-Sacro. Factors associated with delayed diagnosis among Filipino pediatric brain tumor patients: a retrospective review. CNS oncology, 2022 Jun 9;11(3).

THANK YOU FOR YOUR KIND ATTENTION

For the Filipino children and every kid in the world battling and standing tall against all odds.


n (sample)	43.0428514		
Denominator	3.396975842		
Numerator	146.2155264		
Z-score	1.959963985		
Alpha divided by 2	0.025		
Population Size	61		
Marginal Error	0.08		
Population Propotion	0.42		
Confidence level	95%		

Risk of Acute Kidney Injury After Contrast-enhanced MRI Examinations In A Pediatric Population


Hana Jeong¹, Pyeong Hwa Kim¹, Ah Young Jung¹, Jin Seong Lee¹, Young Ah Cho¹, Chong Hyun Suh¹, Jiwon Jung², Hee Mang Yoon¹

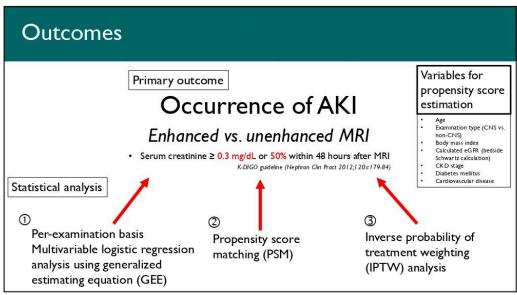
- $1\ \mathsf{Department}\ \mathsf{of}\ \mathsf{Radiology}\ \mathsf{and}\ \mathsf{Research}\ \mathsf{Institute}\ \mathsf{of}\ \mathsf{Radiology},\ \mathsf{University}\ \mathsf{of}\ \mathsf{Ulsan}\ \mathsf{College}\ \mathsf{of}\ \mathsf{Medicine},\ \mathsf{Republic}\ \mathsf{of}\ \mathsf{Korea}$
- 2 Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea

22nd Annual Scientific Meeting of Asian and Oceanic Society for Pediatric Radiology (AOSPR) 2024

1

Purpose

To investigate the associations between GBCA administration and the occurrence of AKI in pediatric patients, and to determine the risks associated with AKI

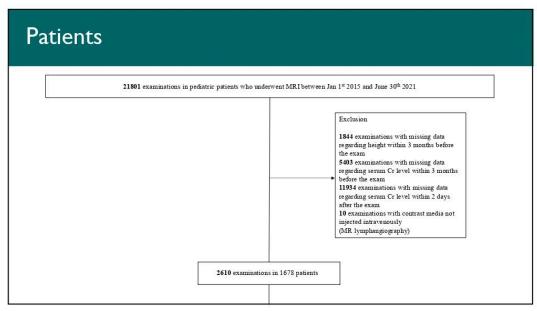

3

Materials and Methods

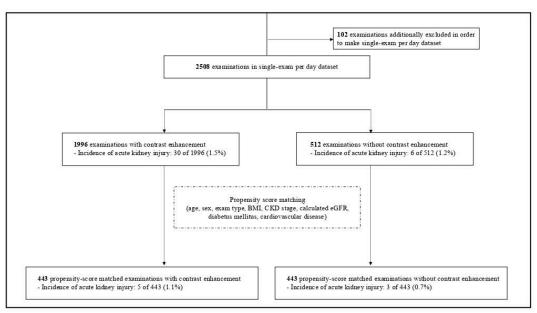
Patients

- · Single center, retrospective cohort study
- Consecutive pediatric patients (≤ 18 years) who underwent contrast-enhanced or unenhanced MRI between January 2015 ~ June 2021
- Exclusion
 - · Unavailable height, weight, or serum creatinine within 3 months before MRI
 - Unavailable serum creatinine within 2 days after MRI
 - GBCA not administered intravenously (e.g., MR lymphangiography)
 - Additional MRI examinations obtained in one sitting (e.g., consecutive brain \rightarrow spine MRI in one slot)
 - · Only the prior MRI examination included

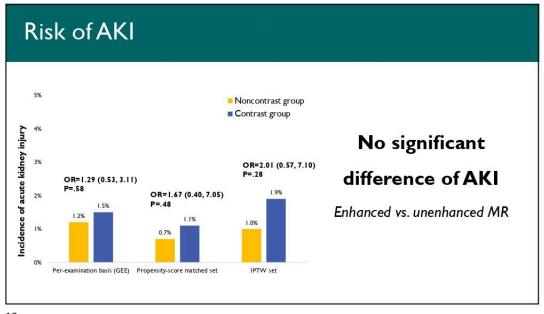
5

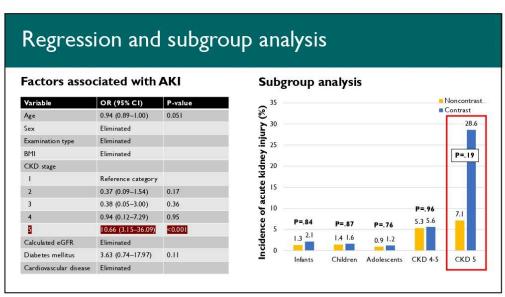


Statistical analysis


- Multivariable logistic regression using GEE to explore factors associated with AKI after MRI
- Propensity score analysis
 - Hosmer-Lemeshow test \rightarrow <u>discrimination</u> for propensity score model
 - C-statistic \rightarrow <u>calibration</u> for propensity score model
 - Standardized mean difference (SMD) $> 0.1 \rightarrow$ considered as imbalanced
- Subgroup analysis (age, sex, CKD stage, diabetes mellitus, cardiovascular disease)

7


Results



9

Baseline characteristics Noncontrast group showed SMD group (n=512) group (n=443) group group (n=1706) (n=1672) • CNS (e.g., brain or spine) exam↑ 9.0 ± 6.9 9.3 ± 6.2 9.0 ± 6.8 9.3 ± 6.3 9.2 ± 6.7 8.8 ± 6.4 Renal insufficiency↑ 1087 (54.5) 909 (45.5) 241 (47.1) 202 (45.6) 205 (46.3) 949 (55.6) 863 (51.6) → Imbalanced in PSM, but balanced in IPTW 271 (52.9) 241 (54.4) 238 (53.7) 757 (44.4) 809 (48.4) 0.38 0.06 77 (15.0) 616 (30.9) 67 (15.1) 87 (19.6) 478 (28.0) 512 (30.6) 435 (85.0) 376 (84.9) 356 (80.4) 1228 (72.0) 1160 (69.4) 18.8 (5.4) 18.4 (4.7) 0.08 18.2 (5.1) 18.4 (5.0) 0.05 18.17 (5.2) 18.56 (4.6) 0.08 **Acceptable** 1594 (79.9) 278 (13.9) 88 (4.4) 29 (1.5) 7 (0.4) 333 (65.0) 297 (67.0) 303 (68.4) 1228 (72.0) 1230 (73.6) Calibration Discrimination 86 (19.4) 34 (7.7) 18 (4.1) 8 (1.8) 94 (21.2) 28 (6.3) 16 (3.6) 2 (0.5) 315 (18.5) 282 (16.9) 107 (6.3) 103 (6.2) 39 (2.3) 46 (2.7) 17 (1.0) 11 (0.7) 101 (19.7) Hosmer-Lemeshow C-statistic=0.689 P=0.40 (>0.05) 0.51 100.9 ± 41.2 105.0 ± 39.8 0.10 116.8 ± 61.8 111.9 ± 42.9 0.09 7 (1.4) 41 (2.1) 0.05 5 (1.1) 7 (1.6) 0.04 32 (1.9) 27 (1.6) 0.02 26 (5.9) 23 (5.2) 0.03 130 (7.6) 111 (6.7) 0.04

13

Limitation

- Sample size (especially neonates, CKD stage 5)
- Exclusively used gadoterate meglumine (97%)
- Urine output (one of AKI criteria) not considered
- Confounding variables (e.g., nephrotoxic drug or sepsis) not fully considered

Conclusion

- The incidence rate of acute kidney injury following contrast-enhanced MRI examinations was similar to that following unenhanced MRI examinations.
- Although there was no interaction between CKD stage and GBCA, numerically higher incidence of AKI in the contrast group with CKD stage 5 warrants careful interpretation.

15

Thank you for the attention!

Pyeong Hwa Kim, MD, PhD phkim@amc.seoul.kr

Assistant professor

Department of Radiology and Res<mark>earch Institute</mark> of Radiology, Asan Medical Center, <mark>Unive</mark>rsity of Ulsan College of Medicine, Korea

