Comparison of the Occurrence of Atelectasis between Propofol and Dexmedetomidine as a Sedative for Pediatric MRI

Pyeong Hwa Kim¹, Hee Mang Yoon¹, Yong-Seok Park², Ah Young Jung¹, Young Ah Cho¹, Jin Seong Lee¹, Myung-Hee Song²

Department of Radiology and Research Institute of Radiology¹ and Department of Anesthesiology and Pain Medicine²,

Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Disclosure

There are no conflicts of interest and nothing to disclose.

Purpose

- To compare propofol and dexmedetomidine as a sedative in regard to occurrence of atelectasis
- To investigate factors associated with atelectasis
 development in children imaged whole-body MRI under
 sedation

Introduction

- Prolonged sedation required for children d/t immobilization and noise issue
- However, sedation induces atelectasis → dyspnea, fever, lung lesion mimicker
- Propofol: commonly used, providing safe and effective sedation
 - Incidence of atelectasis in pediatric patients: 42–82%

Lutterbey G, et al. Paediatr Anaesth 2007; 17: 121-5

- Dexmedetomidine: highly selective alpha-2 agonist
 - · Less respiratory depression, emerged as an alternative to conventional sedative

Koroglu A, et al. Anesth Analg 2006; 103: 63-7. Mason KP. Paediatr Anaesth 2010; 20: 265-72.

Relationship between dexmedetomidine and atelectasis is poorly described

Materials and Methods

Study Population

- Single tertiary referral center-based retrospective study
- Patients who underwent whole-body MRI (WBMR) under sedation using propofol or dexmedetomidine in November 2017 ~ February 2018 included

Inclusion criteria

- ✓ Age < 18 years
- ✓ Underwent WBMR under sedation using propofol or dexmedetomidine
- ✓ American Society of Anesthesiologist Physical Status Classification I or II
- ✓ Available medical records

Exclusion criteria

- ✓ Sedated using other sedatives or both propofol and dexmedetomidine
- ✓ Abnormalities in the thorax that interfered with the evaluation of the presence of atelectasis
- ✓ Underwent WBMR not following our institution's routine protocol

Sedation Protocol

- Followed routine protocol of pediatric sedation clinic in our institution
- Sedatives selected according to anesthesiologist's preference
- Target sedation level: level 5 on the modified Ramsey sedation scale
- HR, BP, SpO₂, partial pressure of end-tidal expiratory CO₂ were monitored

Propofol

Bolus of 1 mg/kg propofol repeatedly until the patient becomes unconscious

Followed by a continuous infusion of 100 – 200 mcg/kg/min

Adjuvant agents including midazolam and/or ketamine administered as required

Dexmedetomidine

Loading dose of 1.0 – 2.0 mcg/kg for 10 minutes

Followed by a continuous infusion rate of 1.0 – 2.0 mcg/kg/hr

Image Acquisition

- Using a 3T MR system (Ingenia, Philips Medical Systems)
- 3-6 subsequent table positions to cover the head to the toes
- Including coronal and sagittal STIR images
- Coronal non-enhanced T1-weighted fast spin echo images and post-contrast scans with coronal three-dimensional fat-suppressed T1-weighted gradient echo images obtained if contrast enhancement required
- Coronal STIR at thoracic level acquired at initial and end of the WBMR to evaluate atelectasis

- Assessed using initial & final coronal thoracic STIR images
- Evaluated by pediatric radiologist (5-yr experience) blinded to sedative types
- Objectives of interest
 - Rate of atelectasis
 - Atelectasis volume per total lung volume (%)
 - Overall image quality

- Objectives of interest
 - Rate of atelectasis
 - Atelectasis grade
 - Grade 1: no atelectasis
 - Grade 2: linear atelectasis along the bronchovascular bundles
 - Grade 3: crescent-like subpleural atelectasis
 - Grade 4: segmental atelectasis

Lutterbey G, et al. Paediatr Anaesth 2007; 17: 121-5

- Grade 5: lobar atelectasis
- Atelectasis volume per total lung volume (%)
- Overall image quality

- Objectives of interest
 - Rate of atelectasis
 - Atelectasis volume per total lung volume (%)
 - Volumetric calculation by drawing the margin of atelectasis on each image slice
 - Total lung volume also calculated by drawing the margin of both lungs
 - Overall image quality

- Objectives of interest
 - Rate of atelectasis
 - Atelectasis volume per total lung volume (%)
 - Overall image quality
 - 1: unreadable
 - 2: extreme artifact
 - 3: moderate artifact
 - 4: mild artifact
 - 5: no artifact

Statistical Analysis

- Chi-square test: association between additional O₂ and atelectasis
- Bonferroni correction used for multiple pairwise comparison
- Factors associated with development of atelectasis explored using multivariable logistic regression analysis
 - Sedative types, age, sex, supplemental O2, induction time, scan time, use of adjuvant agents
 - P-value < 0.1 in univariable analysis → entered in to multivariable analysis
- SPSS (version 21) and MedCalc (version 16.8) used

Results

Study Population

 $[^]a$ Adjuvant agents: midazolam and/or ketamine; more frequently used in dexmedetomidine group (P = 0.002)

Rate of Atelectasis

- Requirement of additional O₂: **propofol > dexmedetomidine** (64.4% vs. 2.9%; *P* < .001)
- Atelectasis: **propofol > dexmedetomidine** (47.5% vs. 17.6%; *P* = .004)

	Cucin		Atelectasis Grade					
Group		n	1	2	3	4	5	Any atelectasis
ı	Propofol + O ₂ (+)	38	19 (50%)	15 (39.5%)	1 (2.6%)	3 (7.9%)	NA	19 (50%)
II	Propofol + O ₂ (-)	21	18 (85.7%)	3 (14.3%)	NA	NA	NA	3 (14.3%)
Ш	Dexmedetomidine	34	28 (82.4%)	4 (11.8%)	2 (5.9%)*	NA	NA	6 (17.6%)
		l vs. II	0.007	0.046				0.007
	<i>P</i> value	I vs. III	0.004	0.008	0.486			0.004
		II vs. III	0.750	0.789				0.750

Atelectasis Volume

- Atelectasis proportion: no statistical significance between groups
- Propofol: atelectasis proportion tend to increase during the imaging
- Dexmedetomidine: atelectasis proportion tend to decrease during the imaging

Group	Atelectasis volume per total lung volume on initial images (%)	Atelectasis volume per total lung volume on final images (%)	P value*
Propofol + oxygen (+)	1.37 (0.1-2.6) %	1.52 (0.8-4.4) %	0.095
Propofol + oxygen (-)	0.47 (0-3.8) %	1.23 (0.7-4.4) %	0.046
Dexmedetomidine	1.05 (0.3-3.2) %	0.63 (0.2-1.25) %	0.293
P value†	0.254	0.654	

^{*} P values of Wilcoxon signed rank test for comparison between initial and last images.

[†] P value of Kruskall Wallis test for comparison of three groups.

Factors Associated with Atelectasis

Requirement of additional O₂: the only significant factor
(Adjusted OR, 4.215; 95% CI, 1.363-13.031; P = 0.012)

		Univariate		Multivariate			
Parameters	Odds Ratio	95% CI	P value	Odds Ratio	95% CI	P value	
Age (per 1 month)	1.008	0.998-1.019	0.122				
Sex							
Female	1						
Male	0.713	0.305-1.665	0.713				
Drug							
Propofol	1						
Dexmedetomidine	0.237	0.086-0.657	0.006	0.709	0.183-2.745	0.619	
Supplemental O ₂ administration	5.619	2.240-14.095	< 0.001	4.215	1.363-13.031	0.012	
Induction time	0.925	0.855-0.925	0.051	0.965	0.887-1.050	0.407	
Scan time	1.024	0.987-1.063	0.210				
Use of adjuvant agents	0.641	0.235-1.749	0.385				

Image Quality

Overall image quality between propofol and dexmedetomidine was not different

Case: propofol

A 5-month-old male with neuroblastoma

Grade 4

Segmental atelectasis in BUL

13.6 %

Estimated atelectasis volume

Case: dexmedetomidine

A 6-year-old male with neurofibromatosis I

Grade 2

Linear atelectasis in LLL

1.08 %

Estimated atelectasis volume

Conclusion

Conclusion

- Pediatric patients sedated with propofol were more likely to develop atelectasis than those sedated with dexmedetomidine during MRI.
- Supplemental oxygen due to desaturation may be an important factor contributing to the development of atelectasis.
- To obtain pulmonary images without atelectasis in children under sedation, dexmedetomidine is more likely to be suitable as a sedative agent.